Using Kernel Density Estimation to Identify, Rank, and Classify Severe Weather Outbreak Events
نویسندگان
چکیده
A method for ranking severe weather outbreaks of any type using a linear-weighted multivariate scheme has been introduced recently. The results of using this ranking method indicated that the scheme was capable of identifying the most significant severe weather outbreaks. However, the inclusion of days in which numerous reports were widely dispersed across a large region, or in which multiple clusters of reports that were geographically widely separated, was problematic. Though the studies included a variable (the so-called middle-50% parameter) that was effective in identifying these cases, a new way was needed to account for these days in a manner that agrees with subjective perceptions of these events. A candidate scheme introduced here uses nonparametric kernel density estimation to identify clusters of severe weather reports associated with a single severe weather event. Clusters with relatively few reports or sparse coverage within the region associated with the event then can be excluded quite easily. This technique also allows for multiple, regionally-separated clusters of severe reports to be considered in one day. After identifying clusters of severe weather events from 1960-2008, the cases are ranked and classified in a way similar to past research, using multivariate linear-weighting and cluster analysis, respectively. Results suggest that the most significant severe weather outbreaks again are identified appropriately, and the cases could be classified as major tornado, hail-dominant, wind-dominant, and minor mixed-mode events. ––––––––––––––––––––––––
منابع مشابه
Identification of Hazardous Situations using Kernel Density Estimation Method Based on Time to Collision, Case study: Left-turn on Unsignalized Intersection
The first step in improving traffic safety is identifying hazardous situations. Based on traffic accidents’ data, identifying hazardous situations in roads and the network is possible. However, in small areas such as intersections, especially in maneuvers resolution, identifying hazardous situations is impossible using accident’s data. In this paper, time-to-collision (TTC) as a traffic conflic...
متن کاملObjective Classification of Tornadic and Nontornadic Severe Weather Outbreaks
Tornadoes often strike as isolated events, but many occur as part of a major outbreak of tornadoes. Nontornadic outbreaks of severe convective storms are more common across the United States but pose different threats than do those associated with a tornado outbreak. The main goal of this work is to distinguish between significant instances of these outbreak types objectively by using statistic...
متن کاملThe Relative Improvement of Bias Reduction in Density Estimator Using Geometric Extrapolated Kernel
One of a nonparametric procedures used to estimate densities is kernel method. In this paper, in order to reduce bias of kernel density estimation, methods such as usual kernel(UK), geometric extrapolation usual kernel(GEUK), a bias reduction kernel(BRK) and a geometric extrapolation bias reduction kernel(GEBRK) are introduced. Theoretical properties, including the selection of smoothness para...
متن کاملComparison of the Gamma kernel and the orthogonal series methods of density estimation
The standard kernel density estimator suffers from a boundary bias issue for probability density function of distributions on the positive real line. The Gamma kernel estimators and orthogonal series estimators are two alternatives which are free of boundary bias. In this paper, a simulation study is conducted to compare small-sample performance of the Gamma kernel estimators and the orthog...
متن کاملOn Kernel Information Propagation for Tag Clustering in Social Annotation Systems
In social annotation systems, users label digital resources by using tags which are freely chosen textual descriptors. Tags are used to index, annotate and retrieve resource as an additional metadata of resource. Poor retrieval performance remains a major challenge of most social annotation systems resulting from the severe problems of ambiguity, redundancy and less semantic nature of tags. Clu...
متن کامل